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Critical free-surface flow over a semi-circular obstruction
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Abstract. Numerical solutions are presented for the problem of two-dimensional “critical” flow of an ideal fluid
over a semi-circular obstacle attached to the bottom of a running stream. The upstream Froude number and
downstream flow speed are unknown in advance, and are therefore computed as part of the solution. The
dependence of flow behaviour on obstacle size is discussed.

1. Introduction

The description of steady, two-dimensional flow of an ideal fluid in an open channel is a basic
problem in fluid mechanics and hydraulics, and is discussed frequently in the literature. The
essential features of such flows, in the presence of an obstruction in the channel, are given
by Lamb [5]. According to linearized theory, in which the size of the disturbing obstacle is
assumed to be small, the flow takes one of two possible forms, depending on the value of
the upstream Froude number F, which is the ratio of the phase speed of the fluid infinitely
far upstream to the speed at which a small disturbance would travel in the fluid. If F < 1,
linearized theory predicts a region of uniform flow far ahead of the obstruction, followed by
a train of downstream waves. When F > 1, a wave-free solution is obtained, in which the
fluid surface simply rises over the obstacle, before returning to the undisturbed level down-
stream. There is no linearized solution when F = 1.

Forbes and Schwartz [4] used a boundary-integral technique to obtain numerical solutions
to the exact, non-linear equations governing the flow of an ideal fluid in a channel with a
semi-circular obstruction on the bottom. They found that the non-linear results were
generally qualitatively similar to the predictions of linearized theory, with a train of down-
stream waves produced when F < 1, and a wave-free symmetric surface profile when F > 1.
Their results, however, are inconclusive near F = 1, and in fact they conjectured that
solutions possessing waves might also be possible in the approximate interval 1 < F < 1.3,
giving possible non-uniqueness of solutions for these values of F. Their argument was based
on the assumption that, as F increased, the wavelength of the downstream waves would
increase, ultimately giving a downstream solitary wave at about F ~ 1.3.

Recent work by Vanden-Broeck [9] casts some doubt on the validity of the above
conjecture. He finds that non-uniqueness of solutions is indeed a possibility when F > 1,
with one type of solution corresponding to perturbation of uniform flow, and the other type
representing a perturbed solitary wave, similar to the conjecture of Forbes and Schwartz [4].
However, Vanden-Broeck’s solitary-wave solutions do nor emanate from the sub-critical
(F < 1) region, are symmetric about the semi-circle and do not possess waves.

Non-uniqueness of solutions is also a possibility when F < 1. In addition to the solutions
possessing downstream waves, there is another well-known solution type, referred to as
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“critical flow”. In this case, there is a uniform sub-critical (F < 1) stream ahead of the
obstacle, followed by a uniform super-critical (F > 1) stream behind the obstacle. Thus the
flow resembles the cascade of fluid over a waterfall, and does not possess waves.

The computation of critical flow as a solution to the full non-linear equations of motion
has been addressed by various authors. Aitchison [1] used a variable finite-element method
to obtain flow over a bottom-mounted triangular weir, and a similar approach was used by
Bettess and Bettess [2]. Both papers have the disadvantage that the upstream “radiation”
condition is not specified in advance. Critical flow has also been obtained as a solution to
equations derived from certain shallow-water theories, as is the case in the studies undertaken
by Naghdi and Vongsarnpigoon [7], and Sivakumaran, Tingsanchali and Hosking [8]. This
latter paper contains photographs of critical flow generated in a laboratory flume.

In the present paper, we solve the exact equations of two-dimensional ideal fluid flow over
a semi-circular obstruction, using the formulation of Forbes and Schwartz [4]. Critical flow
is obtained by allowing the upstream Froude number F to be sought as part of the solution,
and specifying uniform flow upstream and downstream of the obstacle, with unknown depth
and flow speed infinitely far downstream. Accurate numerical solutions are obtained for
most Froude numbers, except in the low-speed limit F — 0, when the flow downstream
evidently becomes a thin fluid jet moving at high speed.

2. Formulation

Consider a semi-circular cylinder of radius R mounted on the bed of a horizontal channel.
A cartesian coordinate system is defined, with the origin at the centre of the semi-circle and
the y-axis pointing vertically. Fluid flows through the channel in the positive x-direction,
with speed ¢ and depth H infinitely far upstream. Relative to the coordinate axes the flow
is steady and is subject to the acceleration g of gravity in the negative y-direction. Suppose
that the flow is critical, with unknown uniform speed c¥ far downstream; then, by conservation
of mass, the unknown downstream fluid depth is H/V.

The problem is now non-dimensionalized using H and c as reference length and speed,
respectively. For ideal flow, there are then three relevant dimensionless parameters. These
are the dimensionless downstream speed V, the circle radius

and the depth-based Froude number

(4

(gH)"™

For critical flow, however, only one of these quantities can be specified independently. A
sketch of the flow in dimensionless coordinates is given in Fig. 1.

Since the flow is irrotational and the fluid incompressible, a velocity potential ¢ and
streamfunction y exist, in terms of which the horizontal and vertical components, » and v,
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Fig. 1. Dimensionless flow configuration in the z = x + iy plane. The free surface is a portion of an actual
solution profile, obtained with « = 0.45.

of the fluid velocity vector may be expressed as

u=¢, =y, v=29¢ = —Vy, 2.0

There is no component of flow normal to the bottom y = h(x), where the bottom shape is
defined by the function

@ =), (x| S«

h(x) = { 2.2

) x| 2 o
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v

and the constant pressure condition at the fluid surface gives Bernoulli’s equation in the form
1P+ v) +y = 3FF + 1 2.3)

on the free surface.

For critical flow, the unknown downstream velocity is ¥ in the positive x-direction, and
the stream depth is 1/V, as in Fig. 1. The Bernoulli equation (2.3) therefore gives a relation
between V and the upstream Froude number F, of the form

2 172
F - lrrs) =9

The downstream Froude number is

Fos = FV", (2.5)
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and thus, for ¥ > 1, it necessarily follows from equations (2.4) and (2.5) that F < 1
upstream, whilst F,¢ > 1 downstream.

Equations (2.1) show that the complex potential f = ¢ + iy can be expressed as an
analytic function of the variable z = x + iy. Following Forbes and Schwartz [4], the
z-plane is now mapped into a {-plane in which the bottom profile given in (2.2) becomes a
straight line. The required mapping is

1 o?
C = '2'<Z+?>a

which, upon solving for z = x + iy in terms of the new variable { = ¢ + in, yields
z = {4+ (* — o), (2.6)

Finally, the roles of the variables fand { are interchanged, so that { is sought as an analytic
function of /. This transformation has the advantage of simplifying the problem formulation
to the extent that the bottom and the free surface map to the streamlinesyy = Oand y = 1,
respectively, in the f~plane.

The final form of the Bernoulli equation in the f~plane is

P2 — a)F — o)
8(z2)X(&; + n})

+y =1FF+1 on ¢y = 1, 2.7

where z is found from { using equation (2.6), and the bars denote complex conjugation.
Forbes and Schwartz [4] have derived an integral equation relating the real and imaginary
parts of the function d{/df at the surface y = 1. This equation is

2 dé
[Co(d, D) — 3] - ;'[_w 6@ ) — N g
- L= 1 6 — ¢)
= — ;J:_w n0(0, 1) {0 _— + @ — oF + 4} de, (2.8)

and automatically satisfies the bottom condition and the equations within the fluid. The
integral on the right-hand side of (2.8) is singular in the Cauchy principal-value sense when
0 = ¢.

The free-surface profile for critical flow is thus obtained by solving equations (2.7) and
(2.8) subject to (2.4) and the requirements

{—>3f as ¢ > — (2.9)
and
[~f as ¢ co, (2.10)

2V '
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giving conditions far upstream and far downstream of the semi-circle, respectively. Once {
has been obtained at the free surface y = 1, its shape z can be obtained from equation (2.6).

3. Numerical methods

This problem is solved in essentially the same manner as that discussed by Forbes and
Schwartz [4]. The free surface is truncated to some finite interval ¢, < ¢ < ¢, and a grid
of equally-spaced points ¢;, i = 1, ..., N defined, according to

¢ = ¢ + (@ — Dh,

where the point spacing is

o b9

N-1"

Newton’s method is used to solve this problem for the vector of unknownsu = [r;, . . .,
nx]- As an initial guess, we approximate the function n,(¢, 1) at the free surface by the
relationship

1 — V[ e?
= N
LY7 (1 + e"“’) G-D

which satisfies equations (2.9) and (2.10), and is suggested by the conformal mapping of the
f-plane strip 0 < ¥ =< 1 to the interior of a semi-circle of radius 1. However, the constant
V in (3.1) is unknown, and so its starting value is taken to be V' x~ 1.5.
Equation (2.9) is satisfied by imposing the conditions §, = 1¢,,n, = 1, 7] = Oat the first
point ¢, upstream, and eventually computing & so as to satisfy the Bernoulli equation (2.7).
“The quantities n,, . . . , n are computed from the guess at the vector u of unknowns using
the trapezoidal rule integration formula

h ’ ’ :
i = i + 5 [ +ni4) i=2,...,N (3.2)
The downstream condition (2.10) is next satisfied approximately by defining

V = —. 33
20y (3.3)

The Froude number F is now computed from equation (2.4), enabling the computation of
£, at this stage.

The quantities &, . . . , &} are obtained from the approximate values of the components
of the unknown vector u using the integro-differential equation (2.8). This equation is
evaluated at the halfpoints ¢,_,,, k = 2, ..., N, and its domain of integration truncated
to the numerical interval ¢, £ ¢ < ¢, using equations (2.9) and (2.10) to estimate the
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contributions from the portions of the integrals which are ignored in the truncation. The
integrals are discretized using the trapezoidal rule, which requires no special modification in
order to cope with the singular integral on the right-hand side of equation (2.8), as pointed
out by Monacella [6]. This yields a system of N — 1 linear equations, which can be solved

for&,_1p,k =2,..., N,andthen ¢, . . ., £} can be recovered using linear interpolation.

The values &,, . . ., £, are next obtained by trapezoidal-rule integration, as in equation
(3.2),and then x,, . . ., xyand y,, . . . , yyare computed from (2.6). The Bernoulli equation
(2.7) evaluated at the points ¢,, . . ., ¢» yields a non-linear system of N — 1 algebraic

equations in the vector u of N — 1 unknowns. This system is solved by Newtonian iteration,
as described by Forbes and Schwartz [4].

As a check on the numerical accuracy of our solutions, two standard internal consistency
checks have been performed. The first is to establish that the results are sensibly independent
of the number N of free-surface grid points, and the second is to demonstrate that the choice
of ¢, and ¢, leaves the solution unaffected. In general, it is found that the surface profiles
are visually unaltered by such changes, and in each case, the values of V' and F can be
obtained with at least three significant figures accuracy.

4. Discussion of results

The numerical algorithm of Section 3 has been used to generate critical flow solutions for
a variety of values of the semi-circle radius a. As « is increased, the speed of the downstream
portion of the flow increases, with a consequent reduction in the upstream Froude number.
We have been able to compute accurate solutions for values of the semi-circle radius in the
interval 0 < a £ 0.5. For o > 0.5, the Newton’s method algorithm fails to converge, and,
although the reason for this is not yet fully understood, it appears to be related to problems
of numerical accuracy, rather than to any physical limitation upon the solution. This will be
discussed more fully later. Solutions were computed with up to N = 201 free-surface grid
points, as required, and all programs were run on the PYRAMID 90 XE minicomputer in
the Mathematics department of the University of Queensland.

Figure 2 shows the relationship between the downstream speed V and the radius « of the
disturbing semi-circle. As o — 0, the flow becomes more like a uniform stream with speed
V — 1 far downstream, but as « is made larger, the speed V increases with a corresponding
decrease in the downstream fluid depth.

The variation of the upstream Froude number F with circle radius « is shown in Fig. 3.
For small «, the overall flow is nearly uniform, at the critical Froude number F — 1. As «
is increased, the upstream Froude number decreases monotonically until the value « = 0.5
(F = 0.262) is reached, at which point Newton’s method ceases to converge. Figures 2 and
3 and equation (2.5) clearly indicate that the flow ahead of the obstacle is always sub-critical
and behind the obstacle it is always super-critical.

Some computed non-linear free-surface profiles are displayed in Fig. 4. When o = 0.1,
there is a region of moderate curvature of the surface near the semi-circular obstruction,
followed by a downstream region of uniform flow having slightly reduced depth. This
qualitative description of the flow remains unchanged as « is increased, except that the
variations in the surface profile become more pronounced. Thus for « = 0.5, the surface

slope becomes large near the obstruction, which is followed by a shallow uniform stream
moving at high speed.
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Fig. 2. Downstream speed V as a function of semi-circle radius a.
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Fig. 3. Upstream Froude number F as a function of semi-circle radius a.
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Fig. 4. Free-surface profiles obtained numerically, for five different values of a.

The solutions displayed in Fig. 4 are all of high accuracy, except the case F = 0.5, at which
two forms of numerical error are in evidence. At this large value of a, a small, numerically-
generated wave-train appears ahead of the obstacle; as explained by Forbes and Schwartz
[4], these waves have no physical existence, and are a consequence of the truncation of the
domain of the integro-differential equation (2.8) at the first grid-point ¢, upstream. The
truncation of equation (2.8) at the last point ¢, downstream results in an unimportant error
affecting only the last few numerical grid points. This error is manifested as a small, abrupt
rise in the free surface downstream, and, although slight, is visible in the profile obtained
with @ = 0.5. Of far greater concern is the fact that, for large «, the downstream speed V
is large, which causes the numerical grid points to cluster very close together in the down-
stream portion of the flow.

The failure of Newton’s method to converge for « > 0.5 can be explained in terms of the
numerical errors discussed above. In particular, the clustering of numerical grid points
downstream of the obstacle must ultimately erode the numerical accuracy in this region,
inhibiting the ability of Newton’s method to yield a solution. This problem might perhaps
be overcome by using a physical-plane formulation of the problem, as in Forbes [3]. Of
course, the flow becomes more singular as a increases, in the sense that the downstream
portion of the flow becomes shallower and faster, and any numerical formulation must
surely encounter difficulty for sufficiently large a. Indeed, the physical problem itself may
become unstable at large a, since the abrupt change in bottom slope at x = « could cause
the formation of a hydraulic jump. Thus it appears that numerical solutions may not be able
to investigate the large a (small F) limit, and an alternative perturbation approach is
currently under investigation.
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5. Comnparison with experiment

In an attempt to gauge the true effectiveness of the present numerical scheme in predicting
an actual critical flow situation, the numerical results of the preceding section have been
compared with results obtained from experiments. performed in the Civil Engineering
department at the University of Queensland. Two different semi-circular cylinders, of radii
30mm and 75 mm respectively, were made from a cement-plaster mixture, and were succes-
sively mounted at the bottom of a horizontal rectangular flume, of width 250 mm and depth
130 mm. This apparatus is shown in Plate 1. The water depth at any point could be measured
using a probe fitted with a Vernier scale, and the discharge Q in the channel could be inferred
by measuring the time taken for a known mass of water to exit the flume.

Figure 5 shows a comparison of the numerical results with the values determined by
experiment. The dimensionless semi-circle radius a appears on the horizontal axis, and on
the vertical axis is plotted the ratio of the downstream fluid depth H),s to the upstream depth
H, using dimensional variables as at the beginning of Section 2. Notice that the numerical
results in Fig. 5 are deduced easily from the quantity ¥, since the theoretical value of the ratio
H,z/H is simply V',

When the semi-circular cylinder of radius R = 30 mm was introduced into the flume, the
upstream and downstream water depths H and Hg could be measured directly using the
probe, and the results are shown in Fig. 5. The dimensionless ratio « = R/H could be varied
by increasing the discharge Q, since this causes the upstream water level H to rise. With the
larger cylinder of radius R = 75mm, the downstream depth H,g usually could not be
measured reliably, since the flow downstream is fast and the water shallow, giving large
relative errors in measurement. Consequently, for the larger semi-circle having R = 75 mm,
the downstream depth H,; was computed from the discharge

Q = cHW,

Plate 1. Experimentally observed flow over a semi-circular obstruction, of radius R = 30 mm. The flow is from
left to right.
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Fig. 5. The non-dimensionalized downstream flow depth, H,;/H as a function of «, computed numerically and
measured experimentally.

in which W = 250 mm is the channel width. Since Q and H could be measured, the velocity
ccould then be calculated, enabling the determination of the Froude number F = ¢(gH)~'~.
The quantity ¥ could then be obtained from equation (2.4), and its inverse finally gives the
desired ratio Hpg/H.

From Fig. 5 it may be seen that reasonable agreement exists between the calculated and
measured values, in particular when the scatter of the experimentally determined points is
taken into account. Of course, the actual flow possesses effects not allowed for in the present
theoretical model, such as the growth of boundary layers and fluid re-circulation near the
points at which the cylinder meets the bottom of the flume. This latter effect could be
observed by injecting dye into the flow, and perhaps indicates that a better comparison with
experiment might be obtained for a different bottom shape in which slope discontinuities are
eliminated, such as that considered by Sivakumaran et al. [8]. Nevertheless, agreement here
is acceptable, and the results obtained with the larger cylinder (R = 75mm) indicate a
plausible continuation of the theoretical curve in Fig. 5.
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